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SUMMARY 

In Part I of this paper we presented a mixed finite element method, for solving unsteady, incompressi- 
ble, convective flows, based on assumed ‘deviatoric stress-velocity-pressure’ fields in each element, 
which have the features: (i) the convective term is treated by the usual Galerkin technique; (ii) the 
unknowns in the global system of finite element equations are the nodal velocities, and the ‘constant 
term’ in the arbitrary pressure field over each element; and (iii) exact integrations are performed over 
each element. 

In this paper we present numerical studies, both for steady as well as unsteady cases, of the 
problems: (a) the driven cavity, (b) Jeffry-Hamel flow in a channel, (c) flow over a ‘backward’ or 
‘downstream’ facing step, and (d) flow over a square step. All these problems are two-dimensional in 
nature, although certain 3-D solutions are to be presented in a separate paper. The present results are 
compared with those which are available in the literature and are based on alternative approaches to 
treat incompressibility and convective acceleration. The possible merits of the present method are thus 
pointed out. 
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PROBLEM OF THE WALL-DRIVEN CAVITY 

(a) Steady-flow 

The problem definition is given in Figure 1. This problem has been analysed previously, 
using reduced-integration-penalty methods, by: (i) Hughes, Liu, and Brooks’ using 4 noded 
bilinear velocity elements, with one-point integration for the penalty term, and 2 x 2 
Gauss-Legendre rule for the convection terms (with no ‘upwinding’). Their’ finite element 
system involved 882 or 924 equations prior to the imposition of boundary conditions. Both 
the velocity and pressure solutions were presented.’ (ii) Bercovier and Engelman* using 
9-noded parabolic velocity elements, with 2 X 2 integration for the penalty term, and 3 X 3 
integration for convection terms. The finite element system involved 964 equations before 
the imposition of the boundary conditions. Again, both velocity and pressure solutions are 
presented in Reference 1. (iii) Heinrich and Marshall3 using 8 or 9 noded biquadratic 
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Figure 1. Problem definition for a ‘driven cavity’ 

velocity elements, with 2 x 2 integration for the penalty term, and 3 x 3 integration for the 
convection term. The finite element system involved 1050 equations before imposition of the 
boundary conditions. Only velocity results are presented in Reference 3. The solutions in 
References 1-3 are two-dimensional in nature, as are the present. Some three-dimensional 
solutions are beginning to appear in the l i t e r a t ~ r e ; ~ ’ ~  these will be compared with our results 
in a forthcoming paper. 

It should be remarked however, that Oden et a1.6.7 find that the penalty-based 4 and 9 
node elements using, respectively, 1 point and 2 x 2  point integration for the penalty term 
may lead to divergent pressure solutions which may need averaging or filtering to stabilize 
them. 

In contrast, in the present method, 2 meshes as shown in Figure 2 are used. Mesh A 
consists of 88 four-noded elements and 108 nodes; and thus the finite element system 
involves (2 x 108 + 88) = 304 equations prior to the imposition of boundary conditions. Mesh 
B consists of 168 elements and 195 nodes, thus the number of equations is (2 X 195 + 168) = 
558. From Figure 3, wherein the computed velocity profiles on the vertical centre line of the 
flow domain are shown for two different Reynolds numbers, i.e. Re = 100, and 400, it is seen 
that the results are insignificantly different for the two finite element meshes. In Figure 4, 
the present results are compared with those of Burgraff.8 Even though the present results 
were insignificantly different for the meshes A and B of Figure 2, in order to generate 
‘resonably pretty looking’ computer plots of velocity vectors and streamlines, Mesh B is 

LlzHzm Mesh A 
Mesh 0 

Figure 2. Finite element meshes for the driven cavity problem (A) Total number of elements = 88, Total number of 
points = 108; (B) Total number of elements = 168, Total number of points = 195 
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Figure 3. Velocity profiles on vertical centre line (comparison of 2 FE meshes): (a) Re = 100; (b) Re = 400 

selected for the results to follow, since this will lead to ‘dense’ contours,* at least within the 
‘primitive’ graphics capabilities that we have. Figures 5 ,  6 and 7 show, respectively, the 
velocity vector and stream line contours for Re = 100, 400 and 1000. Figure 8 shows the 
velocity vector plots for Re = 2000 and 3000, respectively. Figures 9, 10 and 11 show 
respectively, the computed pressure contours for Re = 0, 100; 400, 1000; and 3000. It 
should be remarked that the present method leads to a ‘direct’ computation of the pressure. 

In order to study the effect of mesh distortion, Mesh B of Figure 2 has been distorted as 
shown in Figure 12(a), wherein 4 noded ‘isoparametric’ elements are used. The computed 
velocity vector profiles for Re = 100, 400 and 1000 are shown, for the distorted mesh, in 
Figures 12(b) and 13, respectively. Thus the present results are seen to be insensitive to mesh 
distortion. 

Considering the excellent correlation of the present results for both velocity and pressure 
with those in References 1-3 and 8, and considering that the present method uses far fewer 
equations than in References 1-3, it is believed that the present results point to the relative 
efficiency of the present method. 

(b) Unsteady-flow 

A solution to the transient problem of the driven cavity has been recently presented by 
Donea et aL9 who used a velocity-pressure formulation and a ‘fractional step’ approach to 
the time-integration in which only the incompressibility condition is treated implicitly. A 
non-uniform 20 x 20 mesh of 4-noded elements with bilinear velocity and constant pressure 
was employed.’ Thus, the total number of finite element equations, prior to imposition of 
boundary conditions, appears to be 1282 in Reference 9. The transient problem was solved 
for Re = 1000 and results shown for t = 5 ,  10, 15 s in Reference 9. 

* Here, and in what follows, plots of velocity vectors along element edges as well as in the interior are given. 
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Figure 4. Velocity profiles on vertical centre line for driven cavity flow (comparison with finite difference results): 
(a) Re = 100; (b) Re = 400 

The present results were obtained using Mesh B of Figure 2; and thus the finite element 
system involves 558 equations. The velocity vector plots and stream line contours for 
Re = 1000 and t = 5, 10, and 15 s are shown in Figures 14, 15, and 16, respectively. It can be 
seen that the present results agree with those in Reference 9 excellently, even though the 
present method involves less than a half of the number of equations as compared to 
Reference 9. 

(a) 

Figure 5. Driven cavity flow at Re = 1 -00: 

(b) 

velocity vectors; (b) streamlines 
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Figure 6.  Driven cavity flow at Re = 400: (a) velocity vector; (b) streamline 

'JEFFRY-HAMEL' FLOW IN A CONVERGING CHANNEL 

Here only the steady-state problem is considered. The problem definition is given in Figure 
17. 

This problem has been solved earlier by: (i) Hughes, Taylor and Levy'" using a penalty 
method with bilinear velocities, and the two meshes they used lead to 110 and 460 
equations, respectively. Both velocity and pressure solutions were presented for Reynolds 
number up to 5655; (ii) by Engelman, Strang and Bathe" using a penalty method with 
biquadratic velocities; and the mesh they used leads to 746 equations. Here, only the 

(a) (b) 

Figure 7.  Driven cavity Flow at Re = 1000: (a) velocity vector; (b) streamline 
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(a) 
Figure 8. Velocity vector plot for driven cavity flow: (a) Re = 2000; (b) Re = 3000 

convergence features of the solution algorithm were presented for Re values up to 1088; (iii) 
Gartling, Nickell and Tanner12 who use a primitive variable method with biquadratic 
velocities and bilinear pressure, with the 'best' results being obtained with a mesh resulting in 
1328 equations. In Reference 12, only velocity solutions were presented for Re up to 1088; 
(iv) Heinrich and Marshall3 using a penalty method with 240 biquadratic elements, but the 
results were presented only for velocities at Re = 61. 

The presently employed mesh, shown in Figure 18, involves 144 four-noded elements, 
with a total number of equations prior to the imposition of boundary conditions being 
(2 x 169 + 144 = 482). 
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(a) (b) 
Figure 9. Pressure contours for the driven cavity; (a) Re = 0; (b) Re = 100 
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Figurc 10. Pressure contours for the driven cavity: (a) Re = 400; (h) = 1000 

The variation along the angular co-ordinate 8 o f  the velocity in the y-direction (see Figure 
18) is shown in Figure 19 for three values of Re -61, 565, and 1088, respectively. Figure 20 
shows the variation o f  velocity with radial distance along the centre line (8-0) for two 
values of Re = 61 and 1088, respectively. Figure 21 shows the variation with 8 of the 
quantity (u, . r )  (u,  is the radial velocity) at r = 1, for three values o f  Re = 61, S65, and 1088, 
respectively. Figure 22 shows the variation with 8 at radial locations r = 1.0 and 2.2, 
respectively, as well as the variation with r at 8 locations 8 = 4-3" and 29.3", respectively, of 
the pressure field at Re = 565. Finally, the normalized radial velocity profiles at Re = 565 are 
shown as functions of 8 for two values r = 1.0 and r = 2.2, respectively, in Figure 23. 

The present results can be seen to be in excellent agreement with the results reported in 
References 10-12 and 3 as well as the analytical 

Figurc 11. Pressure contours for the driven cavity: Re = 3000 
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FLOW OVER A 'BACKWARD' OR 'DOWNSTREAM' FACING STEP 

The problem definition is given in Figure 24, which shows a backward facing step of 
expansion ratio (2:3). At the top as well as bottom walls, the boundary conditions are 
u, = v, =O.O.  At the inlet the boundary conditions are u, = O  and v, = 4 y ( l - y )  with the 
origin of y as shown in Figure 24. Two different types of outlet conditions are used: (i) 
traction free conditions t, = ty = 0; (ii) v, = 0, and t, = 0. 

. .  I 

.......... - - . , , / , . .  I - . . . . . .  . . ---_*, , , , , . . . .  

. . . . . . .  . . _ - - _ _ _ .  . . . . . . .  . . - -  - . -  - - _  * * . . . .  . . .  
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(a) (b) 
Figure 13(a). Velocity vector plot (Re = 400) for distorted mesh: (b) Velocity vector plot (Re 

= 1000) for distorted mesh. 
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Figure 14. Driven cavity flow at t = 5 s: (a) velocity vectors; (b) streamlines 

Experimental work on this problem has been reported by Denham and Partick.14 Finite 
difference calculations using 'upwind' difference schemes were reported by Atkins, Maskell 
and Patrick." In Reference 15 it was found that the upwind difference scheme underesti- 
mates the length as well as the intensity of the recirculation zone as compared to the 
conventional conditionally stable central difference method. Finally a finite element analysis 
of this problem was presented recently by Thomas, Morgan and Taylor16 who employed a 
'velocity-pressure' formulation. The convection term was treated in Reference 16 by using 
the conventional Galerkin technique as well as the 'upwinding' technique. In Reference 16, 
eight-noded elements with quadratic velocity fields and linear pressure fields were used. 

b 
(a) (b) 

Figure 15. Driven cavity flow at t = 10 s: (a) velocity vectors; (b) streamlines 
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(a) (h) 

Figure 16. Driven cavity flow at t = 15 s: (a) velocity vectors; (b) streamlines 

The results for velocities and stream-functions presented in Reference 16 correspond to a 
finite element mesh (Figure 8 of Reference 16) with: (i) the inlet length (prior to expansion) 
of 3 units (ii) the outlet length (after expansion) of 22 units, and (iii) total equations (velocity 
and pressure) of about 520. The authors of Reference 16 state that for this mesh: (i) they 
could not obtain convergence for Re 2 100 when the outlet boundary conditions were t, = 0 
and v y  = 0; (ii) convergence for Re 2 100 was obtained when the outlet boundary condition 
was changed to t, = 0 and 4 = 0, and in addition a condition that v, = 0 was imposed at the 
first node down stream of the step and at the same level (see Figure 2 of Reference 16); (iii) 
'upwinding' was necessary to obtain reasonable converged results at Re = 125 even with the 
boundary condition as in (ii), whereas even 'upwinding' resulted in failure of convergence at 
Re = 125 when the outlet conditions were t, = 0 and 'u, = 0. However, even though the 
results did not converge for Re = 125, t, = 0, v, = 0, it appears that 'upwinding' stabilized 
and smoothed out the results. It should also be remarked that in Reference 16 results failed 

Figure 17. Problem definition for Jefiy-Hamel flow: a = d 6 ;  Re = p a  (V(r, 0)) r/p = p d h  (take p unit). For 
numerical solution, the range 1/4 5 r 5 4 and 0 5 8 5 ?r/6 is modelled. Boundary conditions are (i) traction free at 
r = 1/4; (ii) V, = V, = 0 along 8 = m/6;  (iii) V, = 0 along 8 = 0; (iv) V,(r, 8 )  = 0 at r = 4 and two different Vr(r, 8 )  at 

r = 4 :  (1) V,(r,O)r=l;(2) Vr(r,0)r=4 
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to converge for Re 2 7 3  when: (i) the inlet length (prior to expansion) was 6.5 units and (ii) 
the outlet length (after expansion) was 12 units. 

In contrast, in the present set of results, the following apply: (i) the inlet length is 2'units, 
(ii) the outlet length is 8 units, (iii) the inlet conditions are u, = 4y(l-  y), and uy = 0; (iv) the 
results are presented for both sets of outlet conditions (t, = 0, vy = 0) as well as (t,  = ty = 0), 
and Re values of 73, 125, 191, and 229 respectively. 

Based on the studies of Leone and Gresho" (see Figure 5 therein) it may be surmised that 
the inlet length has n o  noticeable effect on the obtained solution. However, the results of 
Reference 17 do indicate that the longer the outlet length, the smoother and more stable the 
solutions are. Further, the numerical experiments of Reference 17 tend to suggest that 
traction-free conditions at the outlet result in better, smoother, and more stable solutions. 
Even though the studies in Reference 17 are for a flow in a channel past a rectangular 
obstacle, the effect of outlet conditions can be seen to be similar to the present problem of 
flow past a backward facing step. Thus the above comments should be kept in mind while 
comparing the present results with those of Reference 16. 

The finite element mesh used in the present computations is shown in Figure 25; it consists 
of 172 four-noded elements with a total number of (2 x 201 + 172) = 574 equations prior to 
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Figure 21. Variation of (V, x r) with @ for different Re numbers 

the imposition of boundary conditions. Figure 26 shows the velocity vector plots as well as 
the stream lines for Re = 73 and the outlet b.c. of r, = ty = 0. Likewise Figures 27, 28, 29, 
and 30 show the velocity vector plots as well as the stream lines for Re = 125, 155, 191 and 
229, respectively, and for outlet b.c. r, = ty = 0. Note that in all these computations, as stated 
in Part I of this paper, no ‘upwinding’ was used. More interestingly, Figures 31, 32, and 33 
show, respectively, the velocity vector plots an stream line contours for Re = 125, 155, and 
191 and for outlet b.c. t, = v, = 0. These results are rather ‘smooth’, even for the present outlet 
length of 8 units. 

Finally, in Figure 34, the presently computed lengths of the recirculation zones, as well as 
those from References 15 and 16, are compared with the experimental results of Reference 
14. It should be borne in mind, however, that the inlet condition for v, = 4 y ( l - y )  in the 
present calculation as well as those in References 15 and 16, but this may be different from 
the experimental inlet condition. Also References 15 and 16 use upwinding schemes, while 
the present method uses a conventional Galerkin technique. From Figure 34 it is evident that 
the present results are in best agreement with the experimental measurements. 

We believe that the above results effectively serve to illustrate the accuracy and efficiency 
of the present approach. 
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Figure 25. Finite element mesh for flow over a backward facing step: Number of elements= 172; Number of 
points = 201 

FLOW OVER A SQUARE STEP 

The problem definition is given in Figure 35. It is to be remarked that this is the problem 
that led Hughes, Liu and Brooks' to believe that the Gauss-Legendre integration of the 
convection term is inappropriate, and to suggest an 'upwinding' treatment. This conclusion in 
Reference 1 has later been a subject of intense scrutiny by Leone and Gresho.I7 In the 
following we discuss the results for this problem, obtained through the present approach, for 
both steady and unsteady cases. 

E 

0.8 
0 . b  

(b) 

Figure 26. How over a backward facing step with traction free outlet b.c. at Re =73: (a) velocity vectors; (b) 
streamlines, (numerical values are of dimensionless stream function 4d4max) 
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I 1 

(b) 

Figure 27. Flow over a backward facing step with traction free outlet b.c. at Re = 125: (a) velocity vectors; (b) 
streamlines 

(b) 

Figure 28. Flow over a backward facing step with traction free outlet b.c. at Re = 155: (a) velocity vectors; (b) 
streamlines 

(b) 

Figure 29. Flow over a backward facing step with traction free outlet b.c. at Re = 191: (a) velocity vectors; (b) 
streamlines 
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(a) 
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(b) 

Figure 30. Flow over a backward facing step with traction free outlet b.c. at Re = 229: (a) velocity vectors; (b) 
streamlines 

(b) 

Figure 31. Flow over a backward facing step with outlet b.c. of V,=O; Re = 125: (a) velocity vectors; (b) streamlines 

(b) 

Figure 32. Flow over a backward facing step with outlet b.c. of V,=0; Re = 155: (a) velocity vectors; (b) streamlines 
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(b) 

Figure 33. Flow over a backward facing step with outlet b.c. of V, = 0; Re = 191: (a) velocity vectors; (b) 
streamlines 

(a) Steady flow 

Following Hughes, Liu and Brooks' and Leone and Gresho" we consider flow in a 1 unit 
high channel consisting of a step located at 1.2 units from the inlet which is 0.4 units high 
and 0.4 units across. The inlet boundary condition is v, = 1, v, = O .  The outlet boundary 
conditions are z, = ty = 0. Following Leone and Gresho,17 two cases of outlet location are 
considered: 4 units and 6 units from the inlet, respectively. 

0 50 100 150 200 250 
Reynolds Number 

Figure 34. Length of recirculation zone vs Re number: X Present mixed FEM; A FEM with upwinding" + FDM (by 
Atkins ef d.)" 
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Figure 35. Problem definition for flow over a square step 
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Figure 36. Finite element mesh (I) for Row over a square step; Total number of elements = 232; Total number of 
points = 272 
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Figure 37. How over a square step, Re = 200, mesh (I): (a) velocity vectors; (b) streamlines 
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Figure 38. Finite element mesh (11) (extended version of mesh (I)): Total number of elements = 224; Total number 
of points = 264 
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(b) 

Figure 39. Flow over a square step at Re = 85, mesh (11): (a) velocity vector; (b) streamline 

(b) 

Figure 40. Flow over a square step, Re = 200, Mesh (11): (a) velocity vector; (b) streamline 
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Figure 41. Finite element mesh, Re =85,  channel length=4 units; Number of elements= 199; Number of 
points = 237; Number of d.0.f. = 673 

Leone and Gresho” studied this problem exhaustively using a velocity-pressure formula- 
tion and conventional Galerkin technique, wherein a 9 noded element with biquadratic 
velocities and bilinear approximation for pressure is used. 

The presently used mesh, when the considered length of channel is 4 units is shown in 
Figure 36. It consists of 232 four-noded elements with constant pressure, with 272 nodes, 
and the total number of equations are (2X272+232)=776 prior to the imposition of the 
boundary conditions. This is to be contrasted with Grid 2 of Leone and Gresho (Figure 16 of 
Reference 17) which consists of 155 nine-noded elements with 1558 equations, presumably 
prior to the imposition of boundary conditions. Thus the present method involves roughly 
half the number of equations compared to Reference 17. For this length of the channel, the 
computed velocity vectors and the stream line plots at Re = 200 are shown in Figure 37. It 
should be noted that for this channel length, the results of Reference 17 show a spurious 
second eddy near the outlet, which as such is absent in the present Figure 37. It should also 

i 
0.8 

(b) 

Figure 42. Unsteqdy flow, Re = 85,  t = 1.0 s ;  (a) velocity vectors; (b) streamlines 
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Figure 43. Unsteady flow at Re = 85, t = 2.0 s; (a) velocity vectors; (b) streamlines 
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(b) 

Figure 44. Unsteady flow at Re = 85, t = 3.0 s: (a) velocity vectors; (b) streamlines 
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(b) 

Figure 45. Unsteady flow at Re = 85, t = 4.0 s: (a) velocity vectors; (b) streamlines 

be remarked that the length of the eddy shown in Figure 37 is comparable to that found by 
Leone and Gresho17 for the case when the channel length is 6 units. 

The finite element mesh used in the present computation, when the channel length is 6 
units is shown in Figure 38. It consists of 224 four-noded elements with constant pressure, 
with 264 nodes, and the total number of equations is (2X264+224)=752 prior to the 
imposition of the boundary consditions. This should be contrasted with Grid 3 of Leone and 
Gresho (Figure l(c) of Reference 17) which consists of 205 nine-noded elements with 2033 
equations, presumably prior to the imposition of the boundary conditions. For this channel- 
length case, the computed velocity vector plots and stream line contours for Re = 85 are 
shown in Figure 39, whereas similar results are shown in Figure 40 for Re = 200. The results 
for both Re = 200 and 85 are found to be in excellent agreement with those of Leone and 
Gresho." Based on a comparison of the eddy length, Leone and G r e ~ h o ' ~  concluded that 
eventhough the same problem was solved by Hughes, Liu and Brooks' for Re = 200 using 
'upwinding', the effective Re in the upwinding sirnilation' to be 85. The present results for 
Re = 85 (which are in excellent agreement with those of Reference 17) appear to confirm 
this conclusion. 

Figure 46. Mesh for analysis of unsteady flow at Re = 200: Total number of elements = 195; Total number of 
points = 232 
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(b) 

Figure 47. Unsteady flow at Re =200, t = 1.0 s: (a) velocity vectors; (b) streamlines 

(b) The unsteady problem 

The problem is that of unsteady flow in a channel, with inlet and outlet conditions as 
shown in Figure 35. This problem has been solved by Hughes, Liu and Brooks’ who: (i) 
unfortunately did not indicate the details of the mesh (number of elements, etc.) except to 
indicate that penalty-based 9 and 4 noded elements were used, (ii) presented results using 
Gauss-Legendre integration of the convection term, which they believed to demonstrate ‘the 
inappropriateness’ of such an integration of the convection term, and (iii) presented results 
using an ‘upwinding’ scheme which were stable and smooth for both Reynolds number values 
of Re =200 and lo7. In this regard, it is to be mentioned that Leone and Gresho17 estimate 
the effective Re in this upwinded simulation to be 85 and O(10’). Results of a problem of 

(b) 

Figure 48. Unsteady flow at Re = 200, t = 2.0 s: (a) velocity vectors; (b) streamlines 
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(b) 

Figure 49. Unsteady flow at Re = 200, t = 3.0 s: (a) velocity vectors; (b) streamlines 

unsteady flow over a square step were also presented by Bercovier and Engelman’ who, 
although not using any upwinding, present rather stable-appearing results, but unfortunately 
the Re number of the flow is not indicated. 

The presently used finite element mesh for Re = 85 is shown in Figure 41, which has 199 
four-noded elements and 237 nodes with a total of 673 equations prior to the imposition of 
boundary conditions. The inlet velocity v, is uniform, as in Reference 1, and the channel 
length is 4 units. 

The presently computed results for both velocity vectors and stream lines at Re = 85, and 
at times t = 1.0, 2.0, 3.0, and 4.0 s, respectively, are shown in Figures 42-45. The eddy 
length at t = 4-0 s, shown in Figure 45, is in excellent agreement with the directly obtained 
steady-state solution shown in Figure 39. 

Figure SO. Unsteady flow at Re = 200, r = 4.0 s :  (a) velocity vectors; (b) streamlines 
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(b) 

Figure 51. Unsteady flow at Re = 200, t = 5.0 s: (a) velocity vectors; (b) streamlines 

A second case of unsteady flow at Re = 200 was considered, with the finite element model 
being shown in Figure 46, with 659 equations, and a channel length of 6 units. The 
computed results for velocity vectors and streamlines, at t = 1.0, 2-0, 3.0, 4.0, 5.0 and 6.0 s 
are shown in Figures 47-52, respectively. A curious, and as yet unexplained, feature of the 
present solution is the appearance of two eddies at t = 4.0 s, which appear to coalesce at later 
times. The length and intensity of the eddy at t = 6.0 s are in excellent correlation with those 
in the directly obtained steady-state solution shown in Figure 40. 

Further testing of the present method is under way and the results will be reported 
elsewhere. 

I 

(b) 
Figure 52. Unsteady flow at Re = 200, t = 6.0 s: (a) velocity vectors; (b) streamlines 
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CONCLUSIONS 

Even though we are unprepared to make any precise mathematical statements as to the rate 
of convergence of the present method, etc. we believe that the above numerical results 
indicate: (i) the relative efficiency of the present mixed method based on ‘assumed deviatoric 
stress-velocity-pressure’ over ‘the selective-reduced-integration-penalty’ methods or the 
mixed method based on ‘assumed velocity-pressure’ ; (ii) the versatility of the present 
method in treating convective acceIeration terms without resorting to ‘upwinding’. Work that 
may enable us to give more mathematical estimates of convergence, is currently under way 
and will be reported elsewhere. 
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